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In recent years, a lot of scientific interest has focused on cancer immunotherapy. Although

chronic inflammation has been described as one of the hallmarks of cancer, acute

inflammation can actually trigger the immune system to fight diseases, including cancer.

Toll-like receptor (TLR) ligands have long been used as adjuvants for traditional vaccines

and it seems they may also play a role enhancing efficiency of tumor immunotherapy. The

aim of this perspective is to discuss the effects of TLR stimulation in cancer, expression

of various TLRs in different types of tumors, and finally the role of TLRs in anti-cancer

immunity and tumor rejection.
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INTRODUCTION

Toll-like receptors (TLRs) play a key role in the activation of innate immunity due to their
ability to recognize highly conserved molecules expressed by pathogens. Alongside pathogen-
associated molecular patterns (PAMPs), TLRs also recognize endogenous ligands (alarmins, also
called danger-associated molecular patterns or DAMPs). Alarmins are excreted by cells upon tissue
injury or cell death, but their excessive release is associated with autoimmune diseases and cancer
(1, 2). Cell death and chronic inflammation are key features of tumorigenesis leading to increased
production of alarmins in many types of cancer such as breast, colon, pancreatic cancer, melanoma
and glioblastoma (3–5).

TLRs can be located either on the cell membrane (TLR1, 2, 4, 5, 6) or on the membrane
of endosomes within the cell (TLR3, 7, 8, 9) depending on the type of ligand they recognize.
Thus, TLRs located on the cell membrane bind lipids and proteins, whereas TLRs located on the
endosomal membranes bind nucleic acids (6). TLRs transmit signals through adaptor proteins
to the nucleus leading to regulation of the innate and adaptive immune response. Since Deidier
observed that patients infected with syphilis developed very few malignant tumors almost 300
years ago, it has been known that activation of the immune system by bacterial infection can cause
cancer remission (7–9). However, cancer treatment with bacteria is rather controversial due to
the potential toxicity (including flu-like symptoms but also septic shock) and a chance of bacteria
mutating into antibiotic-resistant strains (10). Therefore, TLR ligands (bacterial components, as
opposed to whole bacteria) have been mostly used in cancer therapy (11). On the other hand,
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the role of TLR expression in cancer cells is not very
clear and has been correlated with either good or bad
outcomes. Understanding the role of TLR activation in anti-
cancer immunity and tumor rejection could accelerate the
advancements in the field of immunotherapy and improve
patients’ survival.

EXPRESSION OF TLRs IN DIFFERENT
TYPES OF CANCER

TLRs are expressed by antigen presenting cells (such as dendritic
cells and macrophages) as well as by fibroblasts and epithelial
cells with their main role being host protection from microbial
infection (12). However, functional TLRs are also present on
cancer cells and their expression is often correlated with disease
prognosis, as summarized in Table 1.

Data presented in Table 1 underscores the versatility of TLR
expression correlation with cancer prognosis. The same receptor
can be associated with either good or bad prognosis (like
TLR9) or can be generally correlated with a bad outcome (like
TLR4). This makes TLRs difficult to study as a whole in the
context of oncogenesis and cancer progression and suggests that
researching single receptors in particular types of cancer may
be a better approach. Different populations of cells (i.e., cancer
stem cells, cancer cells, tumor-infiltrating lymphocytes, tumor-
associated fibroblasts etc.) may have different TLR expression
and, as a result, respond differently to TLR stimulation (25, 26).

One recent review discusses expression of TLRs in normal,
pre-malignant and malignant epithelium of esophagus and oral
cavity (27). It draws attention to TLR2, 4, and 5, which are
normally expressed on cell membrane, but upon transformation
toward dysplasia and cancer their expression increases and
becomes more cytoplasmic. It is concluded that changes in TLR
locations and their constitutive activation can lead to chronic

Abbreviations: TLRs, toll-like receptors; PAMPs, pathogen-associated molecular

patterns; DAMPs, danger-associated molecular patterns; TNBC, triple-negative

breast cancer; HMGB1, high-mobility group box 1; LPS, lipopolysaccharide;

BCG, Bacillus Calmette-Guérin; MPLA, monophosphoryl lipid A; TNFα, tumor

necrosis factor alpha; CpG ODNs, CpG oligodeoxynucleotides; CTLs, cytotoxic

T lymphocytes; DCs, dendritic cells; HPV, human papillomavirus; Th1, type

1 T helper; NK cells, natural killer cells; NY-ESO-1, New York esophageal

squamous cell carcinoma 1; PD-L1, programmed death-ligand 1; TAM, tumor-

associated macrophages; MALP-2, macrophage-activating lipopeptide-2; GEMM,

genetically engineered mouse model; APCs, antigen-presenting cells; MHC I,

major histocompatibility complex I; TCR, T-cell receptor; CD80, cluster of

differentiation 80; ROS, reactive oxygen species; MDS, myelodysplastic syndrome;

NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells; COX-2,

cyclooxygenase-2; MyD88, myeloid differentiation primary response-88; TRIF,

TIR-domain-containing adapter-inducing interferon-β; IL, interleukin; IL-1β,

interleukin-1 beta; IL-6, interleukin-6; IP-10, interferon gamma-induced protein

10; AP-1, activator protein 1; IRF-3, interferon regulatory factor 3; JNK, c-

Jun N-terminal kinase; ERK, extracellular signal-regulated kinase; TIRAP, TIR-

domain containing adaptor protein; TRAM, TRIF-related adaptor molecule,

DLBCL, diffuse large B-cell lymphoma; STAT3, signal transducer and activator

of transcription 3; BTK, burton tyrosine kinase; HDAC, histone deacetylase;

M1, classically activated macrophages; M2, alternatively activated macrophages;

CXCR3, C-X-C motif chemokine receptor 3; NSCLC, non-small cell lung cancer;

TAA, tumor-associated antigen; BBB, blood-brain barrier; Flt3L, fms-like tyrosine

3 ligand; Tregs, regulatory T cells; FOXP3, forkhead box P3; MDSCs, myeloid-

derived suppressor cells.

inflammation and tumor progression, as opposed to transient
inflammation leading to tumor eradication.

Recently, expression of TLRs, and direct pro-and anti-tumor
effects of TLR ligands on cancer cells have also been studied (25).
It was shown that glioblastoma stem cells have very low TLR4
expression in comparison to non-stem cells and don’t respond to
TLR4 stimulation, which allows them to survive despite immune
signaling (25). The authors show direct link between TLR4
signaling and stemness, and suggest a treatment strategy based on
TLR4 re-expression. Despite low TLR4 expression glioblastoma
stem cells express high levels of TLR2, and its stimulation by
high-mobility group box 1 (HMGB1) enhanced the stemness
markers of those cells (28).

ANTI-TUMOR ROLE OF TLR STIMULATION

Bacteria and their products have long been known to have anti-
tumor properties (29). The initial work of Deidier was followed
by Coley’s development of sarcoma treatment with a mixture of
bacterial toxins (30). Coley’s results were not widely accepted
by medical society due to inconsistencies and were not followed
for a long time, these days, however, he’s often called “Father
of immunology” (8). Many years later, an outer membrane
component of Gram-negative bacteria, lipopolysaccharide (LPS),
was identified as an active fraction of the Coley’s toxin, suggesting
the involvement of TLR4 activation [reviewed in (7, 31)]. Due
to systemic toxicity, LPS and other bacterial products must
be administered locally, often in a form of an intra-tumoral
injection. It was recently shown that an attenuated strain of
Clostridium novyi efficiently decreased tumor size not only in a
rat model but also in dogs with spontaneous solid tumors and one
sarcoma patient (32). Such treatment is well-targeted as spores
of Clostridium novyi germinate only within hypoxic regions
of cancerous tissue and induce immune response probably via
TLR activation (33). An attenuated strain of Mycobacterium
bovis called Bacillus Calmette-Guérin (BCG), developed as a
tuberculosis vaccine, has been used as a treatment for bladder
cancer for over 40 years (34). The exact mode of action of BCG is
unknown but its anti-cancer effect is caused by both direct effect
of BCG infection on cancer cells as well as of immune response
to it (35).

BCG, a TLR2/4 ligand, is one of the three FDA-approved TLR
ligands. The others are the TLR4 ligand monophosphoryl lipid A
(MPLA) and the TLR7 agonist imiquimod. Several TLR ligands
have been shown to have an anti-tumor effect in different types
of cancer; some key ones are listed in Table 2.

Although TLR ligands can be efficient as a monotherapy,
they are usually administered in a combined treatment, often
playing the role of vaccine adjuvants (46). Their efficiencies
as immunotherapeutic agents rely mostly on the initiation of
T-cell immunity—antigen uptake, processing and presentation,
maturation of dendritic cells, and activation of T cells (11).
Briefly, PAMP/DAMP binding to TLR on immature antigen-
presenting cells (APCs) induces their maturation to professional
APCs that can present antigens (i.e., bacterial or cancer) onmajor
histocompatibility complex I (MHC I). Antigens are presented to
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TABLE 1 | Impact of TLR expression on patients’ outcome.

Cancer TLR Observation References

Esophageal cancer TLR3, 4, 7, 9 TLR3, 4, 7, and 9 are overexpressed in esophageal cancer, TLR9 expression

correlates with advanced stage, poor differentiation and high proliferation

(13, 14)

Lung cancer TLR4, 5, 7, 8, 9 Expression of TLR4, 5, 7, 8, and 9 is higher in lung cancer than in normal cancer

tissue; TLR5 is associated with good prognosis, TLR7 with poor clinical outcome

Reviewed in Gu et al. (15)

Melanoma TLR7 and 8 High TLR7 and 8 expression is associated with high expression of immune cell

markers and predicts longer overall survival

(16)

Pancreatic cancer TLR7 and 8 TLR7 and 8 are highly expressed and stage-dependent in pancreatic cancer

compared to normal pancreas

(17)

Breast cancer TLR9 Low tumor TLR9 expression predicts shorter disease-free survival in triple-negative

breast cancer (TNBC) patients

(18), reviewed in Sandholm and

Selander (19)

Renal cell carcinoma TLR9 TLR9 expression is associated with better survival (20)

Glioma TLR9 TLR9 expression increases according to the glioma grade, therefore high expression

is associated with poorer survival

TLR9 expression is elevated in glioblastoma stem cells

(21)

(22)

Prostate cancer TLR9 TLR9 expression is associated with decreased progression-free survival (23)

Meta-analysis of 15

studies of solid tumors

TLR4 Elevated expression of TLR4 is associated with poor overall survival and shorter

disease-free survival

(24)

T-cells via T-cell receptor (TCR)-MHC I binding in the presence
of co-stimulatory molecules such as cluster of differentiation
80 (CD80), CD86 (on antigen-presenting cells (APCs) binding
CD28 (on T cells). Upon TCR activation, T cells produce
CD154 that binds CD40 on APC surface leading to further
activation of cells (both APCs and T cells). Lineage commitment
of T cells depends also on the presence of transcription factor
and cytokines; cytokines produced by T helper cells are often
stimulating cytotoxic T cell activation (47, 48).

Beside expression on professional APCs TLRs can also be
expressed in T cells where they act as co-stimulatory receptors
that complement TCR-induced signaling to enhance T cell
proliferation and cytokine production (49, 50). Additionally
TLR stimulation of T regulatory cells may revert their
immunosuppressive capabilities, which was shown for a synthetic
TLR2 ligand (51, 52). This is particularly interesting for cancer
research due to high levels of Tregs and their activity in
tumor microenvironment.

TLR ligands as monotherapies have varied efficiency; there are
several reports showing a modest effect of TLR stimulation in
clinical trials, such as the TLR9 ligand CpG-ODN in glioblastoma
(53) and the TLR7 ligand 852A in hematological malignancies
(54). It remains to be defined why in those studies some patients
responded very well to TLR ligands while others did not but
may be caused by differences in TLR expression or immune
infiltration within the tumor. A list of active clinical trials with
TLR agonists used as adjuvants has been recently published (48).

PRO-TUMOR ROLE OF TLR LIGANDS

As opposed to acute inflammation, chronic inflammation
has been associated with tumor progression and is one of
the hallmarks of cancer. Inflammatory cells secrete growth
and survival factors, proangiogenic factors, extracellular-matrix
modifying enzymes, and reactive oxygen species (ROS) that can

lead to enhanced mutagenesis, growth, and invasion of cancer
(55–57). Indeed, TLR4 stimulation by LPS increased production
of immunosuppressive cytokines, possibly contributing to tumor
immune escape, and induced resistance to apoptosis in lung
cancer cells (58). It has also been shown that the LPS from
Helicobacter pylori activates TLR4 on gastric cancer cell lines
leading to increased proliferation (59). A study by Huang
and colleagues underlines that one bacterial species can both
increase and decrease tumor growth, depending on the route of
administration (60). While intravenous Listeria monocytogenes
vaccination inhibited tumor growth in mice, injection of bacteria
directly into tumor mass promoted tumor growth possibly due to
TLR2 activation on malignant cells.

TLR2 and TLR4 inhibition was shown to be efficient treatment

for myeloid malignancies. Patients with myelodysplastic

syndrome (MDS), a hematopoietic stem cell disorder that may
lead to cancer, overexpress TLR2 and may benefit from TLR2
inhibition by OPN-305 antibody (61). It was also reported
that MDS patients overexpress HMGB1 and its inhibition
with sivelestat induces MDS cell death while spares healthy
hematopoietic cells (62). CX-01, a synthetic TLR2/4 inhibitor,
is currently in clinical trial for acute myeloid leukemia (63).
Innate immune signaling, specifically TLRs expression in
myelodysplastic syndromes is covered in detail elsewhere (64).

R848-stimulation of TLR7/8 overexpressing pancreatic
cancer cell line resulted in increased cell proliferation and
reduced chemosensitivity (17). The authors also show increased
nuclear factor kappa-light-chain-enhancer of activated B cells
(NFκB) and cyclooxygenase-2 (COX-2) expression upon TLR7/8
stimulation that has been previously linked to immune evasion
and immunotherapy resistance (65).

Therefore, it seems that TLR signaling can act as a double-
edged sword in cancer (summarized in Figure 1), with its pro-
and anti-cancer roles that have been also reviewed by others
(6, 66–68). A recent review by Braunstein et al. summarizes
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TABLE 2 | TLR ligands as efficient anti-tumor agents in different models of cancer.

TLR Ligand Cancer and model Observation References

TLR2/4 Synthetic derivative of lipid A,

OM-174

Melanoma (in vivo, syngeneic) Reduces tumor progression, prolongs survival especially

in combination with cyclophosphamide

(36)

BCG Bladder cancer (FDA-approved) Reduces recurrence and prolongs survival of bladder

cancer patients

(34), reviewed

in Fuge et al.

(35)

BCG;

OM-174; synthetic lipid A analog,

ONO-4007; macrophage-activating

lipopeptide (MALP)-2

Several syngeneic animal models and

phase I clinical trial

Ligands alone or with chemotherapeutics induce Tumor

necrosis factor alpha (TNFα) secretion, apoptosis and

dendritic cell (DC) traffic

Reviewed in

Garay et al.

(7)

TLR3 Synthetic DNA/RNA hybrid molecule,

ARNAX

Several mouse models, syngeneic

and genetically engineered mouse

models (GEMM) (in vivo)

TLR3 ligand as an adjuvant overcomes programmed

death-ligand 1 (PD-L1) resistance without systemic

cytokine/interferon production

(37)

TLR3 and

TLR7/8

Hiltonol and resiquimod Several (phase 1 clinical trial) TLR ligands as adjuvants of DC vaccine (New York

esophageal squamous cell carcinoma 1 (NY-ESO-1)

tumor associated antigen targeted to DCs), both ligands

are efficient

(38)

TLR4 MPLA human papillomavirus (HPV)-induced

cervical cancer (FDA-approved)

Potent vaccine adjuvants, promote type 1 T helper

(Th1)-biased immune response

Reviewed in

Gregg et al.

(39, 40)

TLR5 Entolimod Experimental and spontaneous liver

metastases (in vivo, syngeneic)

Entolimod suppresses liver metastases and stimulates

long-term antitumor T-cell immunity

(41)

TLR7 Imiquimod Various cutaneous malignancies

(FDA-approved for basal cell

carcinoma)

Induction of apoptosis and stimulation of cell-mediated

immune response

Reviewed in

Bubna (42)

TLR7/8 and 9 Small molecule, 3M-052; and CpG

oligodeoxynucleotides (CpG ODN)

Syngeneic colon cancer and

melanoma cell lines (in vivo)

Combination of both agents eradicated large tumors and

established long-term immunity by increasing number

and activity of cytotoxic T cytotoxic T lymphocytes

(CTLs) and natural killer cells (NK) cells

(43)

TLR7 and

TLR9

Small molecule, 1V270; and CpG-C

class ODN, SD-101

Head and neck squamous cell

carcinoma (in vivo, syngeneic)

Intratumoral injection of TLR agonists activates

tumor-associated macrophages (TAMs) and enhances

the tumor suppressive effect of PD-L1 inhibition

(44)

TLR9 CpG ODN Several types of cancer (Phase 1/2

clinical trials)

CpG ODNs enhance efficacy of immune checkpoint

inhibitors

(45)

In vivo and clinical trials denote experiments done in animal models and human subjects, respectively.

the clinical applications of TLR ligands, including recent clinical
trials, but also gives a thorough introduction to TLR biology (69).

ROLE OF TLR ADAPTOR PROTEINS IN
CANCER

TLRs are bound to cell membranes, therefore TLR signaling is
transduced via adaptor proteins such as myeloid differentiation
primary response-88 (MyD88) and TIR-domain-containing
adapter-inducing interferon-β (TRIF). MyD88 and TRIF
signaling lead to expression of cytokines such as TNF-α,
interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interferon
gamma-induced protein 10 (IP-10), and IFN-γ through the
activation of transcriptional factors NF-κB, activator protein
1 (AP-1), and interferon regulatory factor 3 (IRF-3) (70).
Additionally, MyD88 activation can signal via c-Jun N-terminal
kinase (JNK) or extracellular signal-regulated kinase (ERK)
signaling cascades leading to cell survival and proliferation.
MyD88 can also signal independently of TLRs, through
interleukin (IL)-1 receptor families (71). All TLRs except for
TLR3 are signaling through MyD88 while TLR3 and some of
TLR4 signaling is transmitted by TRIF (72). Although MyD88

can associate directly with TLRs, an additional protein called
TIR-domain containing adaptor protein (TIRAP) has been
shown to facilitate MyD88 interaction with TLR2 and TLR4 (73).
TLR4 requires the presence of another adaptor, TRIF-related
adaptor molecule (TRAM), to associate with TRIF (74).

Mice lacking MyD88 were developed in 1998 and have since

been used to show the crucial role of MyD88 in resistance
to bacterial or parasite infection (75–77). Signaling from TLRs
and MyD88 is involved in protective inflammation responses
to control gut bacterial numbers and intestinal epithelial cell
homeostasis (71). However, the role of MyD88 in colon cancer
development is more complicated. MyD88 was found to be a
target for synthetic lethality in colon cancer; it acts as a bridge
between inflammatory signaling pathways from TLRs and Ras
oncogenic signaling (78, 79). MyD88 inhibition increased colon
cancer cell line sensitivity to genotoxic agents in vitro and in vivo,
reducing tumor growth and increasing apoptosis.

The most malignant subtype of diffuse large B-cell lymphoma
(DLBCL) is associated with gain-of-function mutation inMyD88
(L265P) (80). This mutant form of MyD88 promotes cell
survival by increasing NF-κB signaling and signal transducer
and activator of transcription 3 (STAT3) activation. Because the
mutation lies within the TIR domain of MyD88, it is suspected to
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FIGURE 1 | The role of TLR stimulation in cancer progression. TLR stimulation of cancer cells can lead to either tumor progression or inhibition. Stimulation of TLR 2,

4, and 7/8 can lead to tumor progression via production of immunosuppressive cytokines, increased cell proliferation and resistance to apoptosis. On the other hand,

stimulation of TLR 2, 3, 4, 5, 7/8, and 9, often combined with chemo- or immunotherapy, can lead to tumor inhibition via different pathways. Additionally, stimulation of

TLRs on NK cells and APCs (DCs and macrophages) can induce CTLs to further inhibit tumor growth.

either promote self-assembly or enhance the affinity of MyD88
to TLR TIR domains. The same activating MyD88 mutation
also occurs in almost 3% of chronic lymphocytic leukemia cases
(81). Based on the fact that Burton tyrosine kinase (BTK), a
critical node in B-cell receptor signaling cascades, preferentially
binds mutated MyD88, the BTK inhibitor ibrutinib is being
tested in clinical trials for patients with several types of lymphoid
malignancies (82). Furthermore, MyD88 L265P is a tumor-
specific mutation, therefore it can elicit T-cell response which can
be potentially used in immunotherapy.

Recently, MyD88 was shown to mediate sensitivity to histone
deacetylase (HDAC) inhibition (83). High expression of MyD88
was associated with increased sensitivity to HDAC inhibitor
SAHA resulting in decreased proliferation and enhanced cell
death. Moreover, the authors show that HDAC inhibition
is also efficient in DLBCL cell lines with L265P MyD88
mutation. This interesting link between epigenetics and innate
immunology provides a plausible explanation for sensitivity of
some malignancies to HDAC inhibition.

In high-grade serous ovarian carcinoma, elevated expression
of MyD88 was associated with advanced stage and shortened
overall survival (84). In the same cohort of patients strong
TLR4 and MyD88 expression correlated with favorable survival
in patients with low-grade serous ovarian cancer. Even though
MyD88 inhibition was an efficient treatment in some cases
of colon cancer (as previously mentioned), another group has

shown that themRNA level ofMyD88 is lower in cancerous colon
tissue than in adjacent normal tissue (85). These two examples
suggest that MyD88 may play different roles in various types and
subtypes of cancer.

TLRs IN ANTI-CANCER IMMUNITY AND
IMMUNE REJECTION

Our immune system is trained very well to fight microbes such as
bacteria and viruses. However, tumor cells are often too similar
to normal cells to induce anti-cancer immunity and they have
mastered the mechanisms of immune evasion. Triggering anti-
cancer immunity should lead to efficient eradication of tumor
cells and is a goal of many anti-cancer therapies.

The stroma of all solid tumors contains macrophages,
which may either suppress or promote tumor development
depending on their activation phenotype (86, 87). Classically
activated macrophages (M1-activated macrophages) produce
pro-inflammatory and immunostimulatory cytokines; they are
crucial for host defense and tumor cell killing. The alternatively
activated macrophages (M2) produce anti-inflammatory
cytokines, promote angiogenesis and matrix remodeling leading
to tumor progression and metasiasts. Several TLR agonists were
shown to reprogram M2 macrophages into M1 type, which may
be important in cancer immunotherapy (88). It was recently
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reported that TLR agonists synergize with interferons (type I
or II) to induce antitumor M1 macrophages (89, 90). Another
group combined TLR7/8 ligand R848 with anti-PD-1 therapy in
vivo to see inhibition of tumor growth even in PD-1 resistant
mice (91). Those studies point to another potential application
of TLR ligands in immunotherapy and suggest that combination
of TLR agonists with other immunomodulators could increase
their efficiency when targeting macrophages.

The TLR5 ligand entolimod was shown to increase survival
of mice with colorectal cancer metastases to the liver (41). This
effect was caused by NK-cell-dependent activation of dendritic
cells that led to stimulation of CD8+ T-cells. Interestingly,
entolimod also induced formation of durable CD8+ T-cell
memory sufficient for protection against tumor re-challenge.
Although primarily efficient against liver metastases due to
the restricted pattern of TLR5 expression and C-X-C motif
chemokine receptor 3 (CXCR3)-dependent homing of NK-cells
to the liver, the same mechanism led to entolimod suppression of
lung metastases.

Many tumors constitutively express PD-L1 and therefore
evade immune system surveillance. Targeting PD1/PD-L1 is a
promising treatment strategy especially in immunogenic types
of cancer such as melanoma and non-small cell lung cancer
(NSCLC). However, many tumors remain unresponsive to it,
mostly due to the lack of tumor-specific CD8+ T-cell infiltration
(92, 93). The TLR3 agonist ARNAX was recently shown to
be a potent PD-L1 blockade adjuvant, capable of overcoming
resistance to PD-L1 inhibition in vivo (37, 94). ARNAX
administered with tumor-associated antigen (TAA) triggers
maturation of dendritic cells, which then present TAAs, therefore
inducing anti-tumor CTLs without systemic cytokine/interferon
production, leading to tumor regression. Interestingly, even
without addition of TAA, ARNAX decreased tumor growth,
which can be explained either by DCs internalizing tumor
debris containing TAAs and cross-priming CD8+ T-cells or
TLR3 signaling facilitating chemotaxis of the pre-existing CTLs
through cytokine production (37, 94).

For many years brain tumors were thought to be resilient
to immunotherapy mostly due to the presence of blood-brain
barrier (BBB) protecting the brain from harmful substances.
However, even though antibodies cannot cross BBB of a
healthy person, the barrier often becomes leaky in brain cancer
patients (95). However, BBB disruption is usually not uniform,
with parts of tumor having intact BBB (96). Additionally,
bevacizumab, FDA-approved anti-VEGF antibody normalizing
tumor vasculature, was reported to restore low permeability
of BBB in glioblastoma patients (97). What’s important,
metabolically active cells, including immune cells can cross
BBB, and produce antibodies or directly target tumor cells
inside the brain. The release of HMGB1 as a result of viral-
derived ganciclovir tumor cell death activates TLR2 on DCs
(immunogenic cell death), resulting in an efficient processing and
cross-presentation of tumor antigens leading to tumor regression
in a glioblastoma mouse model (98). This gene therapy approach
was based on the delivery of Fms-like tyrosine 3 ligand (Flt3L),
which is known to enhance dendritic cell infiltration directly to
the brain (99).

HMGB1 may also be released from tumor cells dying
upon chemo- or radiotherapy therefore stimulating and TLR4
leading to DC maturation (100). The authors showed that
TLR4 expression on DCs is necessary for efficient antigen
presentation as breast cancer patients with germline TLR4 loss-
of-function allele relapsed faster after chemo- or radiotherapy
than those with normal TLR4 alleles. Chemotherapy has also
been followed by TLR9 agonist treatment that stimulated DCs
maturation and induced CTL response against tumor antigens
that had previously been ignored by the immune system (101).
Chemotherapy can contribute to anti-tumor immunity not only
by the release of TLR ligands and antigens from dying cells
but also by depletion of regulatory T cells (Tregs). One of the
mechanisms that tumors developed to evade the immune system
is recruitment and expansion of Tregs, CD4+ lymphocytes
characterized by expression of CD25 and forkhead box P3
(FOXP3), which are known to suppress immune response.
Infiltration of a large number of Tregs into the tumor is often
associated with poor prognosis and their removal can evoke and
enhance anti-cancer immune response (102). On the other hand,
systemic depletion of Tregs may elicit autoimmune diseases and
the presence of Tregs is necessary for allograft survival (103). TLR
ligands have been shown to block the suppressive effects of Tregs
(104, 105). Moreover, an LPS-activated DC vaccine not only
inhibits immunosuppressive effects of Tregs but also converts
Tregs into interferon-γ-producing Th1-like effectors (106). This
result shows high immunostimulatory capacity of DCs matured
in the presence of TLR ligand, therefore proposing a more
efficient vaccine that could induce immune rejection (107).

Myeloid-derived suppressor cells (MDSCs), alongside Treg
cells, play a major role in immunosuppression and are key drivers
of tumor immune evasion (108). In a syngeneic mouse model of
colon cancer, treatment with combined TLR7/8 and 9 agonists
significantly reduced the number of MDSC as well as increased
the number of NK and CD8+ T-cells infiltrating the tumor site
(43). This combined treatment was efficient not only in small
lesions but also in large, established tumors formed by colon
cancer or melanoma cells, which were completely eradicated by
this TLR agonist combination.

SUMMARY

Significant advances have been made in tumor biology, including
deciphering some specifics of how TLRs play key roles in anti-
cancer immunity and tumor rejection. Both exogenous and
endogenous ligands are crucial in anti-cancer immunity, but
there is a need to develop novel TLR-stimulating therapies.
Much research is needed to clearly elucidate the roles of TLR
expression in modulating cancer immunotherapy and clinical
outcomes. While it is currently unclear, in most cases, which
TLR-ligand pairs will produce desired oncological outcomes,
there is sufficient evidence to suggest that TLR-modulating
therapies will prove to be safe and efficacious for treatment of
at least some cancer types. Since cancers are heterogeneous,
these new immunotherapies may become integral parts of
multi-treatment regimens or may be useful in some cases as
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monotherapy. Additionally, there is sufficient evidence to suggest
that TLR ligands may be useful as immunotherapy adjuvants
to increase treatment efficacy and improve patient outcomes. It
is difficult to predict whether TLR ligands used as treatments
could potentially promote oncogenesis or tumor proliferation;
however, the hallmarks of cancer are multi-faceted and often
require multiple stimuli to generate tumors. The available data
suggest that TLRs play complex functional roles in tumor biology
and sometimes act as a double-edged sword in immunotherapy
(Figure 1). More studies are needed to unravel roles of TLRs
in cancer taking into consideration multiple factors, including
TLR (and their types) expression level, mutagenesis, roles of
TLR adaptors, and many others. Although tumor heterogeneity
is a well-known phenomenon, many researchers do not take it
under consideration and study bulk tumors instead of specific
populations of cells. Each population of cells (i.e., cancer stem
cell, cancer cell, tumor-infiltrating lymphocyte, tumor-associated
fibroblast etc.) may have different TLR expression and respond
differently to TLR stimulation (25, 26). For example, using
melanoma-invaded lymph nodes and melanoma cell lines, Saint-
Jean and colleagues showed that melanoma cells expressed
TLR 2, 3, 4, 7, and 9 differentially in vitro and possibly ex
vivo (109). While TLR2 and 4 was expressed ex vivo, such
protein expressions were not observed in vitro. In contrast,
TLR 3 and 8 proteins were highly expressed in vitro but
comparatively low expression of these proteins was observed ex
vivo. Interestingly, TLR 7 and 9 proteins expression was observed
in both ex vivo and in vitro settings. To clearly define, and
understand roles of TLRs, it may be better to use isolated cells.
However, to translate such mechanistic elucidations into the

development of anti-cancer therapeutics, researchers would need
to use real-world samples, including bulk tumors (due to tumor
heterogeneity). Further studies of TLR’s roles and functions in
anti-cancer immunity and tumor rejection will greatly advance
development of therapeutic interventions to benefit patients
undergoing immunotherapy.
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