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ABSTRACT: By circumventing the need for a pure colony,
MALDI-TOF mass spectrometry of bacterial membrane
glycolipids (lipid A) has the potential to identify microbes
more rapidly than protein-based methods. However, currently
available bioinformatics algorithms (e.g., dot products) do not
work well with glycolipid mass spectra such as those produced
by lipid A, the membrane anchor of lipopolysaccharide. To
address this issue, we propose a spectral library approach
coupled with a machine learning technique to more accurately
identify microbes. Here, we demonstrate the performance of
the model-based spectral library approach for microbial
identification using approximately a thousand mass spectra
collected from multi-drug-resistant bacteria. At false discovery
rates < 1%, our approach identified many more bacterial species than the existing approaches such as the Bruker Biotyper and
characterized over 97% of their phenotypes accurately. As the diversity in our glycolipid mass spectral library increases, we
anticipate that it will provide valuable information to more rapidly treat infected patients.

Despite public health efforts to combat antimicrobial
resistance, challenges remain in bacterial identification,

in particular, related to organisms that are antimicrobial
resistant.1 To better address this problem and in turn more
effectively control the spread of infectious diseases, it is
essential to develop accurate, affordable, and timely diagnostic
tools.2 Profiling the Gram-negative glycolipid lipid A (and
other bacterial membrane glycolipids from Gram-positive
bacteria) by matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF MS) is a candidate
for such a rapid and low-cost diagnostic tool.3 Lipid A is the
primary immunostimulatory component of lipopolysaccharide
(LPS) and responsible for the toxicity of Gram-negative
bacteria. Due to their diversity between species/phenotypes in
the arrangement of fatty acyl side chains and sugar-associated
functional groups, mass spectra generated from lipid A contain
information to identify and characterize Gram-negative
bacteria.4 Circumventing the need for biological culture to
produce a pure colony allows this glycolipid approach to be
much faster and cheaper than currently used pathogen
detection methods (e.g., morphological/biochemical method),
as well as the protein-based MALDI-TOF MS approach.5−10

The mass spectrometry approach of Leung et al.,3 which is
based on profiling bacterial glycolipids such as lipid A from

Gram-negative microbes and related molecules from Gram-
positive microbes, is also more cost-effective than the next
generation sequencing approach that analyzes whole bacterial
genomes.11

Bioinformatics tools exist that analyze MALDI-TOF MS
protein-based mass spectra. For example, U.S. Food and Drug
Administration (FDA) approved software such as Biotyper
from Bruker Daltonics and Spectral Archive and Microbial
Identification System (SARAMICS) from bioMeŕieux are
currently used in hospital clinical laboratories.7 Recognizing
that these tools cannot differentiate closely related bacterial
species (e.g., Bacillus cereus group),12 new measures of spectral
similarity and a statistical assessment of such identifications
have been proposed. However, these tools are developed for
information-rich protein-based MALDI-TOF MS data, not the
glycolipid mass spectra which contain fewer peaks that are
unique to species. To fully utilize glycolipid mass spectra for
bacterial identification, it is essential to develop bioinformatic
tools specific to glycolipid mass spectra such as those produced
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by lipid A and related Gram-positive molecules including
lipoteichoic acid and cardiolipin.
Constructing meaningful theoretical lipid A mass spectra

with reasonable complexity is very challenging. Wilson et al.13

showed that a Cartesian product algorithm based on
membrane glycolipid structure can, in theory, produce >2
billion molecular masses from the lipid A scaffold. However,
we observe far fewer meaningful masses representing unique
structures in real lipid A mass spectra. Here, we propose a
spectral library approach that utilizes mass spectra generated
by known lipid A structures and related glycolipids from Gram-
positive bacteria. Since our algorithm is based on acquired
data, we can develop an algorithm that reflects the stochastic
nature of bacterial glycolipid ions. Such a spectral library
concept has been previously used in proteomics. There, a
peptide sequence is determined from a tandem mass spectrum
by searching against previously assigned tandem mass spectral
libraries of peptides.14−16 The popular scoring approach used
in this area involves several variations of dot product analysis.
However, due to the lack of many meaningful masses
representing unique structures of species in these glycolipid
mass spectra, the traditional dot product approaches did not
work well in analyzing membrane glycolipid-based mass
spectra. Our previous work also shows that it is more suitable
to use a machine learning technique for glycolipid mass spectra
identification.4

In this work, we propose a model-based spectral library
approach17 for matching glycolipid mass spectra that we refer
to as lipid A spectral library (LASL). Different from previously
proposed spectral library approaches, LASL contains bacteria
identification models instead of mass spectra or representative
mass spectra. The machine learning model can select key ions
in glycolipid mass spectra during its training runs. Thus, it can
work better in identifying glycolipid mass spectra than
algorithms designed for protein mass spectra. By using a
model-based approach, LASL is complex enough to capture
the apparent stochastic nature of glycolipid mass spectra better
than using only one representative mass spectrum per bacteria.
Here, we first introduce LASL as a model-based spectral

library approach and then discuss measures of uncertainty of
bacterial identifications. Then, we demonstrate the perform-
ance of LASL using nearly a thousand glicolipid mass spectra.
Finally, we discuss the limitations and potential of our
approach.

■ MATERIALS AND METHODS
Data. For our analysis, we used the glycolipid mass spectral

data set published by Leung et al.3 that contained 906 mass
spectra from various strains of six microbial species. We
consider these 906 glycolipid mass spectra as a main data set.
These mass spectra were generated by negative ion MALDI-
TOF-MS analysis. In short, samples were grown in liquid
culture and lipids isolated using the hot ammonium isobutyrate
described by El Hamidi et al.18 after which they were analyzed
by MALDI-TOF MS in the negative ion mode. The data set
included 404 mass spectra of Acinetobacter baumannii (AB, A.
baumannii), 79 from Enterobacter cloacae (EC), 55 from
Enterococcus faecalis (EF), 207 from Klebsiella pneumoniae (KP,
K. pneumoniae), 78 from Pseudomonas aeruginosa (PA), and 83
from Staphylococcus aureus (SA). There were two phenotypes
available in the data set: colistin-susceptible (cs) and colistin-
resistant (cr). Colistin (also known as polymyxin E) is used as
a major antibiotic for fighting Gram-negative infections. Since

colistin is the last resort to treat patients infected by multi-
drug-resistant bacteria (e.g., multi-drug-resistant A. bauman-
nii19), the ability to accurately detect colistin-resistant bacteria
and monitor their presence is essential. We denote colistin-
susceptible A. baumannii and colistin-resistant A. baumannii as
ABcs and ABcr, respectively. Similarly, we denote colistin-
susceptible K. pneumoniae and colistin-resistant K. pneumoniae
as KPcs and KPcr, respectively. Besides this main data set, we
had a supplementary data set of four lipid A mass spectra
generated from the following bacteria: Clostridium dif f icile,
Legionella bozemanii, Salmonella typhimurium, and Yersinia
pseudotuberculosis.
All mass spectra were converted to mzXML format using

msconvert (v3.0.9393 ProteoWizard) and then processed
using the MALDIquant (v1.16.2) and MALDIquantForeign
(v0.10) R packages.20 Specifically, the mass spectra were
square-root-transformed and smoothed using a Savitzky−
Golay filter.21 Then, the baselines of mass spectra were
corrected using the statistics-sensitive nonlinear iterative peak-
clipping (SNIP) algorithm,22 and peak intensities in mass
spectra were normalized by their total ion current. The top K
peaks were selected for the further analysis, where K = 50.4

Then, we binned peaks by their mass-to-charge ratios with
their bin sizes of 1 Da. The highest peak in each bin was
selected. Their masses, (normalized) intensities, and ranks of
intensities (across bins) were recorded.
Finally, we created decoy mass spectra, which did not belong

to any species. Only a training set from the main data set was
used for decoy spectra construction. For bacterial identifica-
tion, two sets of decoy spectra were constructed. One set was
used to train the model (N = 1,500), and another was used to
test the model performance and measure false discovery rates
(N = 10,000). Decoy mass spectra were created by extracting
K (e.g., K = 50) random peaks from M mass spectra and
randomly permuting their intensities. For example, if the K
sampled peaks are expressed as (mz1, intensity1), (mz2,
intensity2), ..., (mzK, intensityK), then one example decoy
spectrum can contain the following peaks: (mz1, intensity30),
(mz2, intensity14), (mz3, intensity11), ..., (mzK, intensity2),
where the original intensity values are mismatched with their
m/z values. Our model performance was not too sensitive to
the choice of M as long as M was not too small (e.g., M = 1).
In this work, for each decoy spectrum, we randomly chose M
to be an integer between 5 and 10. For the same purpose, we
also constructed two sets of decoy mass spectra for AB
phenotype identification and another two sets for KP
phenotype identification.

Model-Based Spectral Library. The main data set was
divided into test and train sets in a ratio of 2:1. For each set, we
added decoy mass spectra, which did not belong to any species.
Specifically, we added 1,500 mass spectra in the training set
and 10,000 in the testing set. Adding decoy mass spectra in the
training set improved the model performance, allowing
identification of the correct species with higher confidence.
Decoy mass spectra in the testing set did not overlap with ones
in the training set, but were used to estimate p-values and false
discovery rates.
Mass spectra in the training set were used to construct a

model-based spectral library. We built bacteria/phenotype
identification models using eXtreme gradient boosting
(XGboost) with a logistic regression (binary classification)
option.23 One model was built for each microbial species. We
treated mass spectra from bacteria of interest as positive cases
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and mass spectra from other species and decoy mass spectra as
negative cases. A total of six bacterial identification models
were constructed. Similarly, two phenotype models also were
built for AB and two other phenotype models were built for
KP. The best tuning parameters for bacteria/phenotype
models were selected using the 5-fold cross-validation and
the grid search (see details about tuning parameters in
Supporting Information).
Bacteria/Phenotype Identification. The general frame-

work of bacteria/phenotype identification is displayed in
Figure 1. Given a glycolipid mass spectrum, we first identified a
bacterial species. If the bacterium was identified with high
confidence (e.g., FDR < 0.01) and its phenotype models were
available in the spectral library, we identified its phenotype. In
detail, in step 1, we measured a predicted probability, pb, that a
given mass spectrum was from a microbial species b, where b
represented species in the spectral library. In our setting,∑b∈SL
pb was not equal to one, where SL was a set of all the species in
the spectral library because we chose not to use m-group
classification models where m > 2. Noting that, in practice, a
given mass spectrum may not be from microbial species in the
spectral library, we intentionally added decoy mass spectra in
the training set and used pb as mere scores to choose the best
species models. We called pb as matching scores for the rest of
the work. After a matching score of the given mass spectrum
for each species model was estimated, the species with the
highest matching score was assigned to the mass spectrum as a

bacterial identification. We denote the top matching score as
pb*.
In step 2, we measured the uncertainty of bacterial species

identifications. We note that the spectral library may not
contain a microbial species of interest. Even when the library
contains such a species, misidentifications can occur. Since it
will be important to be certain about bacterial species
identifications made from patients with infections, we
calculated p-values and the corresponding false discovery
rates (FDRs) for the bacterial species identifications and
discarded identifications with FDRs > 0.01. The p-values were
estimated using 10,000 decoy mass spectra in the test set:

‐ ≈
∑ >= *p

I p p

N
value

( )i
N

d b

d

1
d

i

(1)

where d represents the decoy mass spectrum, Nd is the number
of decoy mass spectra, I is the indicator variable, pdi is the top
matching score of the ith decoy mass spectrum, pb* is the top
matching score of an observed (nondecoy) mass spectrum. In
other words, the p-value was calculated by dividing the number
of decoy mass spectra with their top matching score greater
than the top matching score of a given nondecoy spectrum by
the total number of decoy mass spectra. The false discovery
rates were estimated to correct multiple testing errors.24

For the glycolipid mass spectra identified as either AB or KP
with high confidence (FDRs < 0.01), we identified their
phenotypes in step 3 (Figure 1). We note that once

Figure 1. General workflow of LASL.

Figure 2. LASL performance in species identifications. (a) Estimated FDR threshold vs the number of identified species plot. The horizontal green
line was the number of (nondecoy) mass spectra in the test set. The dotted line was based on the true FDR (tFDR) threshold. (b) Receiver
operating characteristic (ROC) curve. (c) Precision-recall (PR) curve.
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phenotypes for other species become available, similar
procedures can be incorporated. Similar to species identi-
fications, the given mass spectrum was matched to the available
phenotype identification models and their matching scores
were calculated. A phenotype with the top matching score was
assigned to a given mass spectrum. The corresponding p-value
and FDR were estimated.

■ RESULTS AND DISCUSSION

LASL performed very well in identifying many species at low
false discovery rates as shown in Figure 2a. Most LASL
identifications had very low false discovery rates. At FDR < 1%,
LASL identified about 95% of mass spectra. Out of 305 mass
spectra, LASL identified 289 spectra at false discovery rates of
1% or less. Examples of correctly and incorrectly identified
spectra are shown in Supporting Information (Figure S1).
Since true identifications in the test set were known, we
investigated how many mass spectra with FDRs < 0.01 were
true identifications. Only one mass spectrum identified by
LASL had a false identification at FDR < 1%. Furthermore, we
also calculated a true false discovery rate (tFDR), which is a
proportion of incorrect identifications of nondecoy spectra.
The dotted line in Figure 2a is based on true false discovery
rates. As shown here, our FDR estimations were close to true
FDRs, and they were conservative estimations of tFDRs.
The proposed scores (pb*) were also good at differentiating

correct identifications from incorrect identifications (Figure
2b,c). We used decoy mass spectra in the test set to measure
the discriminative power of the proposed scores. The matching
scores (pb*) in LASL were good at differentiating correct from
incorrect identifications. The ROC (receiver operating
characteristic) curve AUC (area under curve) was 98.84%.
The precision-recall curve (PR) AUC was also very high with
96.01%.
LASL used multiple characteristics of the mass spectra to

identify species. Among those, the top 10 important features
were displayed in Figure 3 for the AB model. (The top 10
important features for other species/phenotypes can also be
found in the Supporting Information.) LASL automatically
chose the signature ions, which we denote as only those ions
necessary and sufficient to correctly identify a microbe, and
used them to identify the species. The characteristics of the
signature ions were reproducible between both technical and

biological replicates with some variations (see Figure S2 in the
Supporting Information).
We note that there was no overlap in either decoy or

nondecoy spectra between training and test sets. However,
adding decoy spectra into the training set helped us identify
more nondecoy spectra as shown in Table 1. Even without

decoy spectra in the training set, LASL performed well. About
97% of top-ranked identifications among nondecoy spectra
were correct (FDRs filtering was not applied at this stage).
However, including the proposed decoy spectra in the train set,
LASL performed even better. About 99% of top-ranked
identifications among nondecoy spectra were correct identi-
fications. In addition, including decoy spectra in the training
process helped the model distinguish correct identifications
from incorrect or decoy identifications. Without decoy spectra
in the training process, LASL had poor precision-recall area
under curve (PR AUC), while LASL with decoy-training had
very good PR AUC. Specifically, LASL without decoy-training
resulted in 93.80% ROC AUC and 56.51% PR AUC, while
LASL with decoy-training resulted in 98.84% ROC AUC and
96.01% PR AUC.
We further investigated the following alternative decoy

spectra generation strategies: (1) A real number D was added
to all of the m/z values of K peaks that were extracted from
one spectrum, where D was a random number between −100
and 100; and (2) the intensity values of K peaks that were
extracted from one spectrum were permuted where K = 50. At
the estimated false discovery rate threshold of 1%, tFDRs were
0.35, 0.42, and 0.37% for the original decoy strategy, the
alternative decoy strategy 1 (mass shift), and alternative decoy
strategy 2 (intensity permutation), respectively. All of these

Figure 3. (a) Example mass spectrum for AB. The m/z values that were related to the top 10 important features were displayed. The zoomed
spectrum was also shown. (b) Top 10 important features in the AB model. The intensity, the m/z value, and the rank of the intensity of the highest
peak in each m/z bin were features considered to construct the species model.

Table 1. Performance Comparison in Bacterial
Identifications with and without Decoy-Traininga

decoy-training no decoy-training

correct top-ranked IDs, % 99.08 97.38
ROC AUC, % 98.84 93.80
PR AUC, % 96.01 56.51

aThe proportion of correctly identified (nondecoy) spectra, area
under curve (AUC) for receiver operating characteristic (ROC)
curves and precision-recall (PR) curves, were used to compare the
performance.
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decoy strategies were conservative, but, among them, our
original decoy strategy was the most conservative one. The
proportions of correctly top-ranked identifications were 99.08,
98.69, and 97.38 for the original decoy strategy, the alternative
decoy strategy 1 (mass shift), and alternative decoy strategy 2
(intensity permutation), respectively. Further investigation
about the best way to construct decoy spectra is needed in
the future.
Finally, we compared our proposed method to Biotyper25

and bootstrap-based confidence scores.12 We denote boot-
strap-based confidence scores based on cosine and relative
Euclidean distance as cosine and ieu, respectively. Details
about the bootstrap-based confidence scores are shown in
Supporting Information. LASL performed better than Bio-
typer, cosine, and ieu in various aspects. Since an FDR
estimation strategy was developed for LASL, we compared the
performance without making use of estimated false discovery
rates. First, LASL was able to correctly identify more
(nondecoy) mass spectra than the competing approaches.
The proportion of correctly assigned bacteria for LASL was
99.08%, while the competing approaches produced results of
90.79, 90.49, and 84.27% for Biotyper, cosine, and ieu. Most
importantly, LASL identified many more bacterial species than
the competing approaches at true FDRs (tFDRs) < 0.01
(Table 2 and Figure 4). This comparison demonstrated the
degree to which a glycolipid-specific bioinformatics tool could
improve bacterial identifications from glycolipid mass spectra.

LASL also performed well in identifying phenotypes when
phenotypes of species were available in a spectral library

(Table 3). At FDR < 1%, LASL identified phenotypes of 130
AB mass spectral entries, which were 97% of AB mass spectra

in the test set. At the same threshold, 66 out of 67 KP mass
spectra had their phenotype identifications at FDR < 1%. The
area under curve calculations for ROC and PR were over 94%
for both AB and KP phenotype identifications. We did not
consider comparing our approach to Biotyper, cosine, and ieu
in phenotype identifications since the number of confidently
identified bacteria for Biotyper, cosine, and ieu were
substantially smaller than LASL in the bacterial identification
stage.
In this work, we proposed and tested a model-based spectral

library approach for bacterial identifications using glycolipid
mass spectra. LASL performed substantially better than the
existing bioinformatics approaches in terms of accurately
identifying and characterizing bacteria. However, LASL can
identify only bacteria that are present in the spectral library.
Thus, in the future, it is essential to build a spectral library that
contains mass spectra from many different microbes. Noting
that the mass spectrometry technology needed for this assay is
relatively low-cost, widely distributed in hospital clinics, and
easy to use, we anticipate that the diversity of bacteria in this
library will increase rapidly in the future.
Another way to overcome the limitation of the existing small

library with very few entries is to utilize false discovery rates. In
practice, we may not know whether a bacterium of interest is
present in a given spectral library, even when the library
contains a wide variety of microbes. If a glycolipid mass
spectrum of interest is not from bacteria in the spectral library,
the best outcome would be that LASL assigns low matching
scores (pb*) and high false discovery rates to such spectra.
Thus, the identification of those mass spectra would be
discarded, not passing the FDR threshold (e.g., 1 or 5%).
When we tested LASL with the supplementary data set, which
contained no species from the spectral library, the matching
scores for those identifications were very small ranging from
0.01 to 0.02. Their false discovery rates were larger than 5%.
High false discovery rates or low matching scores of mass
spectra do not necessarily imply that those spectra are not from
bacteria in our spectral library. This is because glycolipid mass
spectra of bacteria from the spectral library can have low
matching scores due to the poor quality of mass spectra (e.g.,
low signal-to-noise). However, this demonstrated the potential
use of our approach in practice in cases where our spectral
library does not contain all bacteria. In the future, constructing
decoy spectra from all of the currently available bacteria using
theoretical lipid structures may enable us to more accurately
measure false discovery rates for the identifications of bacteria
that are not present in the spectral library. More investigation

Table 2. Proportions of true bacterial identifications and the
numbers of species identifications among LASL, Biotyper,
cosine, and ieu. The proportions of correct top-ranked IDs
were calculated before tFDR thresholds were applied

methods correct top-ranked IDs, % no. of IDs at tFDR < 1%

LASL 99.08 305
Biotyper 90.79 49
cosine 90.49 135
ieu 84.27 132

Figure 4. True FDR threshold vs the number of identified species plot
comparing among LASL, Bioytper, cosine correlation (cosine), and
intensity-weighted Euclidean distance (ieu).

Table 3. Performance of LASL in Phenotype
Identificationsa

phenotype ROC AUC, % PR AUC, % no. of IDs

ABcr vs ABcs 99.90 96.98 130 (134)b

KPcr vs KPcs 99.94 94.72 66 (67)b

aThe number of identified phenotypes with FDR < 0.01, area under
curve (AUC) for receiver operating characteristic (ROC) curves, and
precision-recall (PR) curves were used to measure the performance.
bThe numbers in parentheses represent the total numbers of mass
spectra identified as either AB or KP at FDR < 1% in the test set.
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about decoy spectra generation strategies will help us use
LASL in practice.

■ CONCLUSIONS
We developed and tested a model-based spectral library
framework to analyze MALDI-TOF-MS data of bacterial
membrane glycolipids such as lipid A from Gram-negative
bacteria and related species from Gram-positive bacteria. The
performance of LASL was demonstrated using human
pathogens notorious as hospital-acquired infections (HAIs)
and for the acquisition of resistance to antibiotics. With the
proposed framework, the library can be extended easily,
containing many more pathogens and organisms of general
interest. As the microbial entries in the library increase, we
believe that LASL will be able to provide valuable information
for treatment decisions of infected patients ultimately helping
to improve health care outcomes by decreasing morbidity/
mortality rates as well as decreasing costs.
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