Proteomic Analysis of Barrett's Esophagus Cells

<u>Naomi Uwugiaren¹, Ying Zhu², Ashita Singh³, Sarai M Williams², Javier A Alfaro¹, Ljiljana Paša-</u> Tolić², Theodore R Hupp^{1,3}, David R Goodlett^{1,4}, Irena Dapic¹

¹ International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland, ² Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States, ³ CRUK, University of Edinburgh, Edinburgh, United Kingdom, ⁴ University of Maryland, Baltimore, MD, United States

Introduction

- \geq Barrett's esophagus (BE) is a disorder in which the normal squamous mucosa in the esophagus is replaced by metaplastic columnar epithelium.
- \geq BE occurs in 15% of patients with gastroesophageal reflux disease and 1-2% of the overall adult population. It is the highest risk for esophageal adenocarcinoma (EAC) and patients with BE have at least 10 times

Results

Protein extraction from 200 cells with µPOTS strategy

> More than 1500 protein groups were identified with CPA samples containing 200 cells.

greater risk of developing EAC.

- > Large sample amounts are typically required to achieve deep proteomic coverage and sample loss may occur during sample preparation steps, limiting the analysis of small sample amounts.
- > Recently, the Microdroplet Processing in One pot for Trace Samples (µPOTS) platform was developed for proteomic analysis of small cell populations.¹ Bottom-up proteomic sample preparation occurs in microwells with volumes of 2 μ L, thereby reducing adsorptive protein losses.
- > Non-dysplastic BE cell lines (CPA) p53 KO and p53 Smad4 KO cells were generated with the CRISPR/Cas9 genome-editing technology and stimulated with lithocholic acid (LCA) or X-ray.
- > Goal: determine differentially expressed proteins between CPA WT, CPA p53 KO and CPA p53 KO Smad4 KO treated with LCA or X-ray by performing bottom-up proteomic sample preparation with samples containing 200 cells using the μ POTS platform.

Figure 2. Number of identified protein groups from samples containing 200 cells with the µPOTS strategy. KO: p53 KO, dKO: p53 KO Smad4 KO

Figure 3. Protein overlap between WT, KO and dKO (a), LCA WT, LCA KO and LCA dKO (b) and X-ray WT, X-ray KO and X-ray dKO (c).

Figure 1. Microwell chip containing wells with diameters of 2 mm is placed on an ice bag to prevent sample evaporation during addition of reagents (a) and in a humidity box during incubation (b).¹

 \geq N-myc downstream-regulated gene 1 (NDRG1) was found in WT when comparing WT vs LCA WT, in LCA KO when comparing LCA WT and LCA KO, in X-ray WT when comparing LCA WT and X-ray WT and in X-ray dKO when comparing dKO vs X-ray dKO.

 \geq NDRG1 has been reported to suppress tumor growth and metastasis.²

Figure 4. Biological functions and regulation of NDRG1.²

Conclusions

 \geq The high sensitivity of the µPOTS platform was demonstrated by analyzing samples containing 200 cells.

> NDRG1 was shown to be a major responder in different cell lines with different stresses.

References

1. Xu, K., et al. Anal. Bioanal. Chem. (2018) 2. Fang, B. A., et al. Biochimica et Biophysica Acta (2014)

