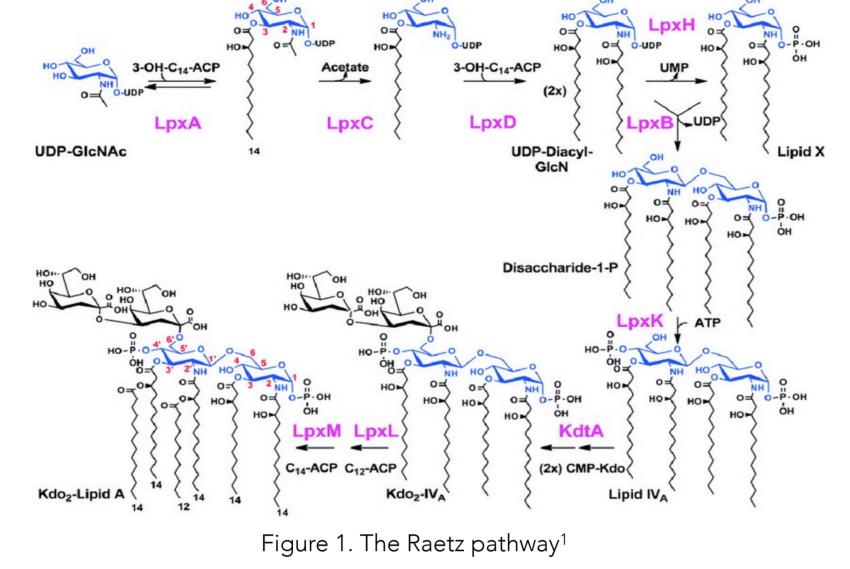


Enzymatic production of lipid A using synthetic biology approaches

Elif Gediz Kocaoglan¹, David Goodlett^{1,2}, Leonardo Rios Solis³, Theodore Hupp^{1,4}, Marcos Valenzuela Ortega⁵, Irena Dapic¹

¹International Centre for Cancer Vaccine Science, Gdansk, Poland ² University of Maryland, Baltimore, MD, US ³ School of Engineering, University of Edinburgh, UK ⁴ CRUK, University of Edinburgh, UK ⁵ School of Biological Sciences, University of Edinburgh, UK



THE UNIVERSITY of EDINBURGH

Introduction

Lipid A is the essential component of Gram-negative bacterial lipopolysaccharide and its biosynthesis follow the Raetz pathway.¹ Lipid A triggers proinflammatory response through TLR4-MD2 signaling and thus has great immunomodulatory potential. Monophosphoryl lipid A (MPLA), a detoxified lipid A derivative, has been approved by the FDA and it is being used as a vaccine adjuvant. However, lipid A and its derivatives are currently synthesized chemically, which is expensive and labor intensive.²

Construction of strains

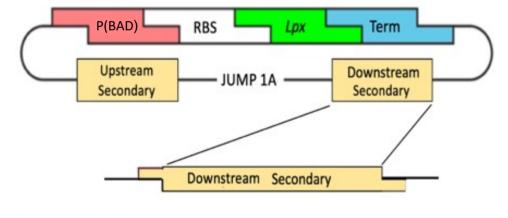
CGSC#12119: E. coli K12 strain with mutations to allow homogenous expression from the arabinose-inducible promoter P(BAD), purchased from the Yale Coli Genetic Stock Centre

Two additional gene deletions in CGSC#12119:

- *rfaD*, to promote KDO_2 -lipid A accumulation³ ullet
- *cdh*, to prevent precursor hydrolysis upon cell lysis⁴

Scarless Cas9 Assisted Recombineering (no-SCAR) system will be used (designed, but not completed)⁵

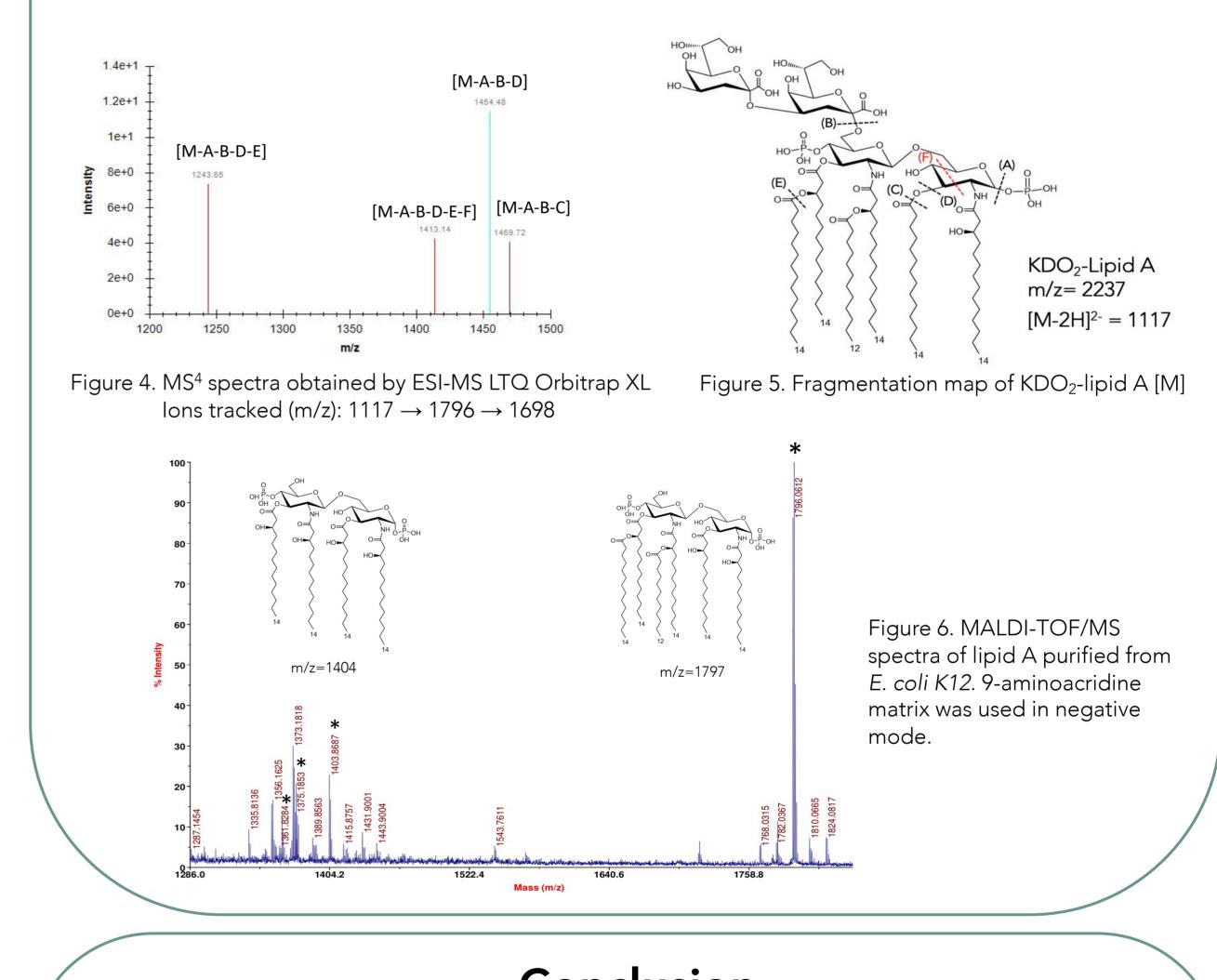
Identification using mass spectrometry

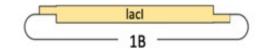

Matrix Assisted Laser Desorption Ionization (MALDI-MS) and Electrospray

Objectives

- Create nine Escherichia coli K12 strains deficient in the production of nine Raetz pathway enzymes
- Identify the rate limiting enzyme of the pathway using the mutant strains
- Optimize lipid A production and synthesize lipid A enzymatically using synthetic biology approaches

JUMP Modular Assembly


The genes encoding for the enzymes of the Raetz pathway will be complemented from plasmids before they are knocked out. JUMP Modular Assembly toolkit is used for plasmid construction:



Verification of constructs:

- Antibiotic and color selection
- Colony PCR
- Sanger sequencing

- Ionization (ESI-MS) were done
- KDO₂-lipid A standard fragmentation patterns is in line with literature⁶ and an additional fragment (m/z = 1413.14) was observed in negative mode

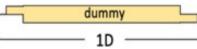


Figure 2. Illustration of the designed JUMP assemblies

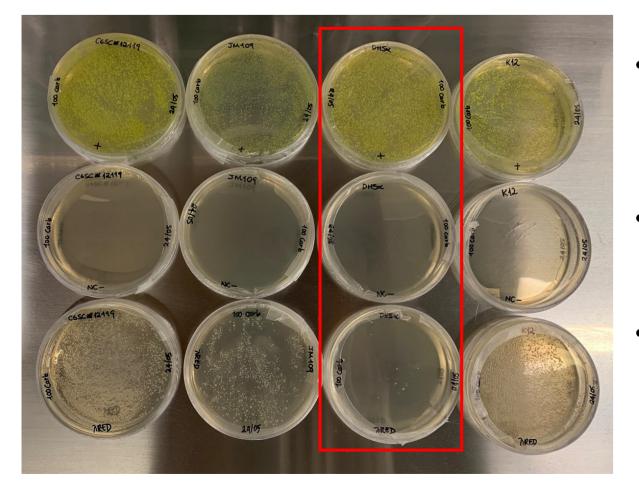


Figure 3. Result of the strain-plasmid instability test

- DH5 α cells don't grow with the λ -Red basic part plasmid but grow with empty basic part plasmid (pUC ori)
- Four strains were tested: CGSC#12119, JM109, DH5α, K12 WT
- Combination of phoA8(del), deoR481, *rfC1* mutations in DH5 α , with λ -Red genes in the basic part plasmid is unstable

Conclusion

The first aim of this project is to identify the rate-limiting step of the Raetz pathway. The pathway will then be optimized using synthetic biology approaches, which will be determined depending on the nature of the rate-limiting enzyme. Up to this date, modular plasmids have been constructed (except 1A-Lambda Red and JUMP-1A), gene knock-out experiments have been designed and mass spectrometry measurements have been performed on *E. coli K12* extracts and lipid standards.

Acknowledgements

Authors thank to Dr. Paulina Czaplewska for MALDI measurements and Dr. Marta Gross for providing the plasmids for the no-SCAR system. This project is funded by the Foundation for Polish Science.

Correspondence

Elif Gediz Kocaoglan, e.kocaoglan.056@studms.ug.edu.pl Irena Dapic, irena.dapic@ug.edu.pl

References

- 1. Raetz, Christian, et al. "Lipid A Modification Systems in Gram-Negative Bacteria." Annual Review of Biochemistry, vol. 76, no. 1, 2007, pp. 295-329., doi:10.1146/annurev.biochem.76.010307.145803.
- 2. Ernst, Robert K, et al. "Immunotherapeutic Potential of Modified Lipooligosacchardes/Lipid A". US20160002691A1, United States 5. Patent and Trademark Office, 7 Jan. 2016.
- 3. Wang, Jianli, et al. "Construction and Characterization of an *Escherichia coli* Mutant Producing Kdo2-Lipid A." Marine Drugs, vol. 6. 12, no. 3, 13 Mar. 2014, pp. 1495–1511., doi:10.3390/md12031495.
- 4. Sawyer, William S., et al. "Targeted Lipopolysaccharide Biosynthetic Intermediate Analysis with Normal-Phase Liquid Chromatography Mass Spectrometry." Plos One, vol. 14, no. 2, 8 Feb. 2019, doi:10.1371/journal.pone.0211803.
- Reisch, Chris R., and Kristala L. J. Prather. "The No-SCAR (Scarless Cas9 Assisted Recombineering) System for Genome Editing in Escherichia coli." Scientific Reports, vol. 5, no. 1, 14 Oct. 2015, doi:10.1038/srep15096.
 - Raetz, Christian R. H., et al. "Kdo2-Lipid A Of Escherichia coli, a Defined Endotoxin That Activates Macrophages via TLR-4." Journal of Lipid Research, vol. 47, no. 5, 14 Jan. 2006, pp. 1097–1111., doi:10.1194/jlr.m600027-jlr200.